
Using Spark on
Cori

Lisa Gerhardt, Evan Racah
DAS Data Day

What is Spark?

● Apache Spark is a fast and general engine for large-scale
data processing

● Data-parallel model
○ Similar to Hadoop, except it harnesses in-memory data for fast data

processing

● Robust body of libraries: machine learning, sql, graphx,
streaming

● Created at the AMPLab in UCB, currently maintained by
DataBricks, more than 400 contributors to git repository

● Requires no parallel programming expertise: Can take
Python, Java, or Scala code and automatically parallelize
it to an arbitrary number of nodes

Spark: So hot right now

● Spark Summit in June had more than 2500 attendees
● Used by Airbnb, amazon, eBay, Groupon, IBM,

MyFitnessPal, NetFlix, OpenTable, Salesforce, Uber, etc.
● And by NASA (SETI), UCB (ADAM)
● Used at NERSC for metagenome analysis, astronomy,

and business intelligence

Spark Architecture

● One driver process, many executors
● Driver creates DAG and coordinates data and

communication (via akka TCP)
● Datasets generally cached in memory, but can spill to

local disk

Spark API

● Can use Java, Python, or Scala
● Latest version also has an R interface and a Jupyter

notebook
● Most newer functionality comes to Scala interface first
● Also some indications that Scala performs better
● Python is easier to use, so we recommend using that to

start out
○ Can always reoptimize in scala later if necessary

● Default version at NERSC is Spark 2.0.0
● Recommend running on Cori

○ Larger memory nodes and faster connections with
scratch file system

Spark Data Formats

● RDD: Resilient Distributed
Dataset. Immutable
collection of unstructured
data.

● DataFrames: same as RDD
but for structured data.
Familiar pandas-like
interface

● Which to use?
○ Future: DataFrames
○ Now: DataFrames and

fall back to RDDs for
more fine tuned control

Spark Goodies

● Streaming: high-throughput, fault-tolerant stream
processing of live data. Twitter, kafka, etc.

● SQL: Structured data processing, lives on top of RDD
API

● ML: classification, regression, clustering, collaborative
filtering, feature extraction, transformation,
dimensionality reduction, and selection. Best only for
really LARGE datasets. Demo tomorrow

● GraphX: Graph parallel computation. Extends RDD to a
directed multigraph with properties attached to each
vertex and edge

Spark Strategy

● Best for DATA PARALLEL!!!
● Make sure you have enough memory

○ Datasets are held in memory for speed
○ When memory is filled up, must spill data to disk, which

slows things considerably
■ NERSC default spills to RAM file system and to Lustre scratch

○ If you get “java.lang.OutOfMemoryError” your executors
have run out of memory. Fix by making the load on each
node smaller. Either
■ Increase the number of nodes OR
■ Increase executor memory

● Keep the cores fed
○ Optimal number of partitions is 2 - 3 times the number of

cores, automatic partitioning sizes can be a little wonky

On MyNERSC
https://my.nersc.gov/data-mgt.php

Real World Use Case: Data Dashboard

200 GB of text

Conclusion

● Spark is an excellent tool for data parallel tasks that are
too big to fit on a single node
○ Easy to use python DataFrames interface
○ Does parallel heavy lifting for you

● Spark 2.0 installed at NERSC, performs well on
data-friendly Cori system

● Come to the hack session tomorrow for more Spark
demos!

National Energy Research Scientific
Computing Center

Spark Batch Job

#!/bin/bash

#SBATCH -p debug
#SBATCH -N 2
#SBATCH -t 00:30:00
#SBATCH -e mysparkjob_%j.err
#SBATCH -o mysparkjob_%j.out
#SBATCH --ccm

module load spark

start-all.sh
spark-submit --master $SPARKURL --driver-memory 15G --executor-memory
20G ./testspark.py
stop-all.sh

Submit with sbatch <submitscriptname.slurm>

Spark Terminology

● Driver process: runs on head node and coordinates
workers (you can adjust memory allocation)

● Executor: single process that runs on worker nodes
● Task: a unit of work that’s sent to one executor
● Application: entire program that is run
● Job: spawned by a spark action (like collect), consists of

one or more stages on multiple nodes
● Stage: a set of tasks that do the same operation on a

different slice of the data
○ See frequent references to “job” and “stage” in the

spark logs
● RDD (Resilient Distributed Datasets): read only collection

of records, held in memory or spilled out to disk

